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1 fluid description of plasmas (cntd . )

1.1 Momentum

We now derive the equation of motion for the fluid elements. We use that the seeked-
after momentum equation is like a continuity equation for the momentum, i.e.

∂

∂t
(nmu)+∇(nmu⊗u)︸           ︷︷           ︸

strange

= ∑
forces

volume
,

where

n ·m ·u =
momentum

volume

is the momentum density of a fluid element. While this approach is straight forward,
the second term on the left side of the continuity equations demands further discussions.
But before we come to this let us first have a closer look at the equation’s right side,
which accounts for external forces acting on the fluid element. Possible candidates for
such forces are gravity

Fg

V
= n ·m ·g,

the electric force

Fe

V
= n ·q ·E,

and the magnetic forces acting on the electrons

Fm,e

V
=−neue ×B
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and ions

Fm,i

V
= neue ×B.

The latter two forces can be combined into a more handy single expression employing
the current density j

Fm,i

V
= n · e((ui −ue)×B) = j×B.

The forces we we have discussed so far are familiar from our discussion of single
particle motion. There is, however, a force stemming from the pressure difference
applied to a fluid element (remember that pressure is momentum flux!), which is
unique for fluid mechanics. To see this, let us assume there is a differences between
the pressure p1 applied to the top face and p2 applied to the bottom face of a fluid
element. Then the rate of change of momentum through the volume element dx3

writes as

∂

∂t
(n ·m ·uzdxdydz) = [p2 − p1] dxdy

∣∣∣∣ · 1
dxdydz

or after dividing by the volume

∂

∂t
(n ·m ·uz) =

p2 − p1

dz
=

p(z)− p(z+ dz)
dz

=−∂p
∂z

.

We have already discussed that in fluid mechanics the pressure is not necessarily a
just scalar, but often a tensor P to account for shear pressure terms. Including the ∇P
term the continuity equation for the momentum is

∂

∂t
(nmu)+∇(nmu⊗u) = nmg+qn(E+u×B)−∇ ·P.

Now let us try to make sense of the “strange” term ∇ · (nu⊗u). To this aim we drop
for now the time dependence, ignore the external forces, and try to calculate the rate
of accumulation of just the x-component of the momentum. Note that also the flux of
x-momentum in y and z direction needs to be included, i.e.

− ∂

∂t
(nmux)x̂dxdydz =

[
dx

∂

∂x
(nmuxux)

]
x̂dydz+[

dy
∂

∂y
(nmuxuy)

]
x̂dxdz+[

dz
∂

∂z
(nmuxuz)

]
x̂dxdy.
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Now we expand the ∂

∂xi
(· · ·) terms by employing the chain rule and get

=m
[

ux
∂

∂x
(nux)+nux

∂

∂x
ux

]
x̂dx3+

m
[

ux
∂

∂y
(nuy)+nuy

∂

∂y
ux

]
x̂dx3+

m
[

ux
∂

∂z
(nuz)+nuz

∂

∂z
ux

]
x̂dx3,

or

− ∂

∂t
(nmux)x̂dxdydz =m [∇(nuu)]x = m [u∇(nu)+n(u∇)u]x .

The y and z components of the momentum accumulation rate can be found similarly.
After combining the three components into a single expression for m(∇(nu⊗u)) we
can write the momentum equation as

∂

∂t
(nmu)+mu(∇ ·nu)+mn(u ·∇)u = ∑

F
V
.

We now resolve the time derivative on the left side

mu
∂

∂t
(n)+mn

∂

∂t
u+mu(∇ ·nu)+mn(u ·∇)u = ∑

F
V

and rearrange the equation

mu
∂

∂t
(n)+mu(∇ ·nu)︸                        ︷︷                        ︸

=uSm

+mn
∂

∂t
u+mn(u ·∇)u−∑

F
V

= 0. (1)

The first two terms are in fact forming the continuity equation multiplied by mu

mu
(

∂

∂t
(n)+(∇ ·nu)

)
= muS.

The appearance of the (mass) continuity equation in the one for the momentum is
actually no surprise. muS describes the change of the fluid’s momentum due to gains
or losses of plasma. If the plasma’s mass density is conserved, muS vanishes.

We now replace the first two terms in Eq. (1) by uSm and obtain the equation of
motion for charged fluids

mn
(

∂

∂t
+(u ·∇)

)
u = ∑

F
V
−uSm. (2)
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1.1.1 Convective Derivative

In the momentum equation (2), the operator within the brackets is called the convective
derivative. To understand this operator better, let us have a look at the time derivative
of a fluid parameter G in a frame moving with the fluid in 1 dimension

DG
Dt

=
∂G
∂t

+
∂G
∂x

∂x
∂t

=
∂G
∂t

+
∂G
∂x

ux.

The first term is the derivative of G fixed in space, while the second term describes the
change of G due to the fluid moving to a new position. Similarily, in three dimensions
the convective derivative DG

Dt reads as

DG
Dt

=
∂G
∂t

+(u ·∇)G.

Note that in the last equation (u ·∇) is a scalar operator.

1.2 Equation of state

The plasma’s equation of state ensures the conservation of energy and depends on
the plasma properties. As an example let us consider a plasma which thermodynamic
properties can be described by an ideal gas. We further assume that there are no sinks
and sources. In this case, each particle has an average energy of 3

2kBT , implying that
the plasma’s internal energy is

U =
d
2

NkBT,

where d is the plasma particle’s number of degrees of freedom. When the plasma is
doing work, U changes by

dU = pA(−dx) =−pdV.

Using the ideal gas equation we get

pV = NkBT =
2
d

U,

and after differentiating

d(pV ) = pdV +V dp !
=

2
d
dU

=−2
d

pdV.

Rearranging the terms yields

0 =
d +2

d
pdV +V dp,
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and after introducing the adiabatic exponent γ

0 = γpdV +V dp

= γ
dV
V

+
dp
p
.

The solution of this equation above

γ lnV + ln p = const.

gives the equation of state
pV γ = const.
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